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A simple model of the interplanetary magnetic field is described and
solved analytically.In this model,space is divided into three regions by
two concentric spheres,conductivijbies (with one exception) are assumed
to be isotropic and constant in each region and flow velocities are
regular and prescribed.The innermost region rotates rigidly around
its center,the intermediate region contains a compressible fluid flowing
radially outward with constant velocity {an idealization of the solar
wind) and the outermost region is at rest.The magnetic field originates
in point sources at the origin and possibly also in a uniform field at
infinity.Methods are described for finding the field under these assumptions,
in the general case and also in the limit when all conductivities are
very high.As an example,the case in which the field's source is a point

dipole,aligned with the axis of rotation,is solved in some detail.
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Introduction

Experimental evidence available now indicates the existence of an interplanetary
magnetic field originating at the sun and extending at least to the earth's orbit,
possibly much further. Many features of this field are still uncertain,but two of its
main properties have been predicted thecretically and seem to beyso far,in agreement
with observation.Both may be regarded as mamifestations of the fact that a highly
conducting fluid ~ here,the solar wind emanating radially from the sun - tends to
impart its motion to lines of force embedded in jt.First,it was predicted that the
solar wind will stretch the lines of force,rendering them almost radial and causing
the field intensity B to fall off less rapidly than it would otherwise (e.g. Alfvén,
1956 ).Secondly,ir’ﬁddition to radial stretching,the field was expected to be twisted
by solar rotation into an archimedean spiral.This point was noted first by Chapman
(1928) who observed that the locus of a particle stream constahtly emitted from a
point on the sun is,at any time,such a spiral ( the same locus is described by
droplets from a rotating sprinkler,for which reason the above is sometimes called
the "garden-hose effect").A line of force drawn out by a stream pf particles would also
follow such a spiral,and it was argued that similar twisting occurs in any: fielkd. .
originating in the rotating sun.Parker (1958) gave a formal proof of this,assuming
that the magnetic field is parallel to the velocity field as seen from a frame of
reference co-rotating with the sun,The effect has also been deduced from experimental
data,from the arrival direction of solar flare particles (McCracken,1962) and from
direct observation by idariner II (Snyder,1963).The "garden-hose angle" bLebmeen
B and the radial direction from the sun was:ggretne order of L5°,

In this workya simple model of the interplanetary magnetic field will be
investigated,first in the limiting case of a perfectly conducting fluid and then

for finite,isotropic and homogeneous conductivity.The model is as follows:
o . I: e B
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Let space be divided into three regions by two concentric spheres of radii Ro
and R; (fig.l).Region I , the innermost,is assumed to rotate rigidly with angular
velocity w .This region also contains the source of the magnetic field,which will be
assumed to be concentrated at the origincBecause of the tedious calculations invilved,
only the case of a dipole source with moment M will be treated in any detail.lf
this dipole is inclined with an angle « to the axis of solar rotation,one may
regard its axial component as an idealisation of the main solar field and its
equatorial component as that of an active region co-rotating with the sun,Region II,

radially

between the spheres,contains a compressible conducting fluid flowing out,\with constant
velociy¥ u o Finally,in region III which extends to infimity,no motion takes place,
Region I here represents the sun,region II the space swept by the solar wind.The
equation connecting the magnetic field B , the electric field E , the velocity ¥

and the conductivity ¢ is

-

curl B = Mo [ E + (gxz_s_)l (1)
and we shall be interested in stationary solutions,with particilar interest in tné case
when ¢° 1is large and Rl considerably in excess of R0 .

It should be borne in mind all along that the preceding is & gross oversimpli-
fication of the actual situation,To stress this peint,all approximations and
neglections used will now be listed,

(1) It is not established that the solar dipole pltags a major role in creating
the interplanetary field.Certainly,the source of the field is quite complex.

(2)» The solar wind is not an ordinary conducting fluid but anea,l\‘lycollisionless
plasma,conducting very well along the magnetic field but much less across it,.
Unfortunately,since the direction of the conduction anisotropy depends on the
magnetic fieldytaking it into account makes the equation of conduction nonlinear,
Except for one case,therefore,the conductivity will be assumed to be isotropic,

(3) The flow and field assumed here are laminar and regular,while observation



indicates a large irregular component.The model developed here thus represents
only the effects of the average interplanetary field and does not include the
turbulent component.

(L) The assumed sharp boundaries are only a convenient appraximation to the
actual ones,which are not too well known at the present time,

(5) In any problem of this sort,the velocity v is generally not determined
a priori but has to be solved simultaneously with B ,using the hydromagnetic
flow equation (e.g. Chandrasekar [1956_] }.This equation is nonlinear and
one notices that with this approach the term (v x 13_) in (1) becomes nonlinear
too.In the vicinity of the earth,of course,the mass flow dictates the magnetic
field because of its much higher energy density ; nevertheless,in the vicinity
of what corresponds to the outer sphere in this model,the flow may be consi-

derably distorted by the field.

Unfortunately,a more realistic medel would be very hard to solve analytically.
It is hoped,however,that the results obtained here will give some qualitative

insight about the behavior of the actual interpknetary field.

Infinite Conductivity

The field produced when ¢ —>o has been derived by Parker (1958),utilizing
a rotating frame of reference.,It will be derived here in a somewhat more
conventional way,
If the conductivity tends to infimity and B does not,in general
e - -fere] (2)

Taking the curl in region II gives,in spherical coordinates (r, &,+¥)

a‘a
+hG
]

U cauvl [ 4'_4' 69. - .(;0 Bqa ] (3)
Utilizing

dwr & = © ()4)



one obtains

X QX
At T YAy = 0

where X stands for either rzBf s T B, or r Bs .Under rotational symmetry

X is independent of time and one

obtains
B, = &@ "
B, = S
and with (L) e = O

On the surface r = Ro s Ey is continuous.Just inside the boundary,by (2)

Ee = - AR smSB.,
and

The continuity of E, then gives

5(8) = - (W/u) emd £

so that the tangent of the “"garden-hose angle'" is

tz)(, = Be/By = - (B/U) Fs &

In general,the source of the field rotates

@(T'&1\9|*’) = 3((1\9—|A)
A = Y - ot
cl o)
Bt T “3e

then (5) becomes

nx w /3_75 _
Ax T wry = 0°
and its solution is
x = X (&, ¥-wt- 0/

(5)

(6a)
(6b)
(6¢c)

sbecause Br is continuous,its value just outside the boundary may be used.

(1

(8)

(9a).

(¢b)

(9¢)

(10)

(11)



Thus

-

By = YT L 6,,08) emp lm (F-at - wr/) (12a)

and the continuity of Eg on r = Ro gives

By = -@fuysad E (9) exp v (P-wt - ov/) (12b)
For a more detailed solution it is generally better to solve (1) for fimite
conductivity and then investigate the behavior of the solution when g~ gets

large.

Fimte Conductivity

We now turn to solving the problem for arbitrary ¢ ,It will be assumed that
0 is uniform in each region and takes the values 97, 9, and 9 in regions I,II
and IIT respectively.The following theorem is found useful : if a vector field B

satisfies (L) , it may be uniquely resolved in the following manner.

G} = cavl ¥ v +  cavl el ¥, r (13)

Following Elsasser (1946) the component fields will be termed the toroidal and
poloidal componentsyrespectively.The theorem was first proved for rotational
symmetry by Lust & Schluter (195L4) and for the general case by Backus (1958).

The following identities hold generally (Smythe,1950)

curl €r ) [ Bvaux ¥ x < i (1La)
el wnd Y = grad Fo(e¥) - ¢ ¥ (1lb)
Using (13),a vector potential may be defined’
A= ¥, +  wavl W v (15a)
E‘i = canv ! fz\ (15b)

A satigifies the gauge condition

-

A A= TP (W)



and the electric field E may be expressed

D8

E = - %’“‘A Lo - 5% (16)
The drelem thus reduces to solving (1) for three unknown scalars v , ¥, and
¥, oThe derivation of a general sclution tends to be tedious and will therefore
only be outlined in this section.In each of the three regions,equation (1)
can be brought to the form
grad &, + Y. + cwld X =0 (17)
(1 is the region's index),Taking the curl and applying the uniqueness of

the resolution (13) gives

cunvi Y, = cuvl cuv ':S» = O
from which
M = MY (r)
g: = S'. ('()

and after substitution in (17)

SL = §: (¥)
The expressions ¥ : and 3. will in general be finctions of ¥, and ¥, ,which
are also defined within an arbitrary function of r.If these functions can be

chosen so that =, vanishes,equation (17) gives

gi = it = (o
Region I
In this region
V oz (WxY) = Ly @Y Smd (18)

the following relations hold for v and for any vector A

S SN A
caly =20
(RY)y = (2xA)
(€u)n = (wxA) vo( 3T+ R+ wB)

(e.g. see lMorse and Feshbach f_19533 eq.1l.l4.3 )



To resolve (¥ x B) in the manner of eqe.(17) one notes

(ex @) = (¢ x curtf) |

"

avad (AY) - (Arcwls) - (AT - WLIA

. mA, . NA Y.
= grad (Av) - w(_wf:w *lese * B39
<D &4
(J x r}_) = - %«u& (JV’M{%\%" - ‘: Q(S%‘ - cauv} (,Sw’_btl) (19)

The rest of (1) is easily resolved in the prescribed manner using (13),(15)

and (16),giving

3ie) = @) ¢ pmes v feTor s 3R (20a) |
/
@, %, |
1) = T (32 +259) - % (20b)
ad,
v = pea (B +0TFR) - Py, (20c)

The option to add an arbitrary radial function to ¥.and ¥,is used to make both
*l,w) and $.v) vanish,so that
%(y,()dr Je 0, W +j\,i',orslu&~;—°—§: = C, (21)
So far no use has been made of the fact that the field's source co-rotates with
region I,so0 that the equations hold even when the field originates,say,in
region III as a fixed “interstellar field".lf equations (9) are now introduced,
one obtains at once
vY, =o (22a)
7Y, -0 (22b)
If one assumes the field's source ig concentrated at the origin,it is useful to
expand ¥, and ¥, 1in spherical harmonics; the expansion of &, then has a
eingularity at the origin corresponding to the source of the field.For instance,
if tris source is a dipole with moment M , inclined at an angle K to the

rotation axis



¥y, = “2;," Qym SM’P,,"Z&) exyr im(P-wt) (23a)
¥, - ;; Bum § ?:L&) exp Lm(¥-ot)
# P8 [k Pl suk®'(6) con (0-wt) (23b)
Where
P peM/umes
Region I1

In this region
o= Ut
The contribution of the toroidal component to (¥ x B) is
w (b x curl W r) 2w (i;« x (grader x 1))

o u { gl - el (24)
and of the poloidal component,by (1lha)

)
w (o « %vwl%(!z")) = ~ewarl ¥ ('\3"57,\‘*4:.")) (25)

A1l other terms of (1) are the same as in region I,therefore

5“(4) = %(92-{) + )100-;_9.’9 - M)\,G,_!,‘f (263)
) = e (5 ¢ 25000) - R (265)
2 () = gl ?a‘% .- ,’—D‘)—;(%ﬂ) - 9¢, (26¢)

As in region I, ¢, and ¥, are chosen so that ¥.and S,, vanish and §z. equals

a constant C, .Using (9),the angular part of ¥, is now expanded in spherical

harmonics

Yy, = 7 G ) ?:279-) orp tm (P - at) (27)

nm

incertine into (26b) and using the independence of spherical harmonics gives,

for any n and m

a\‘» o A Py ' .
lf- &‘;’((C\“M) - %—‘L ()T}(Y(i“*‘> - ( Q\::J - LMQ/‘UO"L) q“m z © (28)

Fultiplying by r Rg » intrcducing the variable P = r/Ry and defining
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_ Fam(8) = 2 Guwm(9)
gives
Yom T WpSiRe 4 b (@Rt mre) £ Y, = O (29)
Let the magnetic Reynolds number asseciated with radial outflow (in region II)
be defined
Qo = /190’,11,\.«

and that asseciated with retatien

ZOCQQ = /‘4007;&:(4]

substituting

Bom T e eXpf)
and defining

e = AT -~ 2im,,

ol = Koy « L Xy
(K2v(m) and %ailm) real, ol,mpositive) this becomes

V\‘:w\ - Uy (o(_:' + Nwm+)8Y) = o (30)

Let operators I,‘ be defined

L - ‘?—(‘ni-l) [334‘_'} g"‘(Q‘ﬂ--l) (31)

Then the general solution of (32) may be written ( [Murpny,1960_] 3 Pe337,eq.256 )
t’A"lwl = H, Ia.,\ [MYI.(“,‘_Q)] + A. 1,,[%”(—%?)]

= A ham (8) + AL ) Uama(9) (32)

Befining ( i - 1,2 )
% ami = §7 exfuUdP) Unm;

the general ferm of ¥, in regien II may be written

t_g' z Z‘ ?:(&) MY\ '.m(*’-a){) [Qum; %w\mu)"' q‘“*‘t%rwtt‘”-} (333)

R ]

and that of ¢,

52; = ZJ 'P‘:“(O') uvs ;«M(‘Q-Qt) [Q"M)%IMI(,) + q‘“”&%w"ﬂ&cs)] (33b)
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Region 111
In this region (1) has no (¥ x B) term.Consequently
5,(1) = @v)«+ T e (34a)
1) = e S ) (3Lb)
Bai) = peTimg - % (3kc)

As before, ¥, 6 and ¥, are chosen so that 1, and ‘S) vanish and §3 is a constant
03 .Let ¥, be expanded in a fashion similar to (27)

Y, = L Hawt) B exp im(e-at) (35)
If m=0 ,the terms have no time dependence,equation (34b) shows they are
harmomic and Hp,(r) is proportional to r'™Y _If m# 0 ,one proceeds as
in region II.Defining

Zam®) = § Ham(8)

and a rotational magnetic Reynolds number for region III

2y, = PeGRQ

one obtains

Zoam — Lowm (v\(v\u)g‘?— - 2im o(w) = 0 (36)

which has the same form as equation (30).As was done thereyone defines

OLQ‘_ = - 2_,‘\. n “3‘0
olac = Ky * L O{BL
leading to
g, = L Pr@enp imie-at) [ A, 2.8+ At ©] (37)
where
fwm ) = 8 Loilexp(se)]

Qowr @) 20187 Lo [oxp(-2,0)]



Choosing o,. as positive,one finds that +H..., (f) contains an exponential
exp (oly § ) which causes it to diverge.Therefore,all A, vanish and (37)

becomes

Y2 D A Ba®) PTO) ey im{ e -at) (38)
In a similar manner
Y, = Zl b“mz me(?) ?m(&) o ™ k‘?—u)*a) (39)

In (39),contributions by a fixed outside scurce may be included.Usually,

equations (9) then no longer hold and the calculation is somewhat different.
Boundary Conditions

the components of
On the boundarieEF}_ ,the tangential one of E and the normal one of

curl B are continuous.Let the operator A" be defined (Sackus,1958)

] a

A - EmeeT®3e * Zenvr (ko)
so that
R A N (L1)
and
[ A" mnen)] PT@) oxpp im® = © (L2)
By (13),(1kbv)
+ D, = - N¥, (43)

and since all boundaries are spherical,this implies the continuity of all

expansion terms of . ,as expressed in (23b),(33b) and (39).In a similar way
r(cavl ), = - A¥,

implies the continuity of the terms of ¥, .On a spherical boundary, curl r¥, is

also contimious,by (13) so is curl curl g_‘:\i; and one may show from this that

Y, /T is also continuous across the boundaries,Finally,using the above

results with (15a),(16) one finds that ¥, is also continuous,There are thus

four conditions to be met on each of the two boundaries and eight sets of

undetermined coefficients.Because the source of the field is poloidal,the
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continuity of the components of ¢, and ~¢,/3Y make it possible to evaluate
¥, independently.Next ¥, is found,using (21),(26a) and (3La) to express
the continuity of ¥ .Finally ¥, is obtained,using the three equations mentioned
above,
As @, and @, increase without limit,the solutions tend to approach
those obtained beforeAassuming E = - (vx B ) oIn general,the solutions
in region III
divergeAunless G, 1is kept finite,This may be interpreted as meaning that
in a system having stationary and rotating ideal conductors in contact,infinite
currents will be excited by unipolar induction.If the hydromagnetic equation
were used,this divergence would not occur because infinite forces would act on
the flow and distort its pattern.
In the worked example that follows this divergence is avoided in a different

_ bi fimite or infinite),
way,namely by the assumption that in region II1 co%%c%%%la%{?“\/—’along

lines of force and zero across them,



A Worked Example

As a simple illustration of the preceding,the case when the field source
is a dipole of moment M , located at the origin and aligned with the axis
of rotation,will now be considered.This source produces an axisymmetric
field and therefore the variables ¥ and t as well as the expansion index

m are absent.t is then found convemient to use dimensionless units and to

define

g = ‘C‘/‘R,.
Yo = Yo /“Rf-

.2¢| = /(oo: uR_°

The scalars defining the field then obey the following equations.In region I

'Y, = o (22a)
VY, = o (22p)
¥, = -(§)Fsme3P - F@H e, @)
in I1

vy, - W = o (k)
T, - W) =o (Llib)
o = 28 - 2 3(9e) + Cy (Lle)

and in IIT,if an isotropic conductivity 03 were assumed
Y¢, = o (L5a)
Y, = o (L5b)
Yo, = - (‘//@a‘zqaa) %(*ﬁ.g) + Cy, (LSc)

As was mentioned at the end of the previous section,in order to prevent

divergence as @; —»e and also to take into account,a‘q’.'l.east partially,

the anisotropy of conductivity,it will be assumed that in region III the
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conductivity is 0, for flow along lines of force and zero for flow

across them.Then,in region III

D = O\Afl@

it
o

(L6a)

1}

8- curl® Mevs (E-8) (46b)
These equations are nonlinear ; however,it will be shown that a solution having

the required form near the boundary is obtained by taking

cudl ® = © (L6c)
from which
(E-2) = o (Léd)
Using (13),(1hb) and applying the treatment of (17),equation (L6c) gives
V'Y, = o (L7a)
¢ = o0 (L7p)

The unknown scalars are expanded @
InI, as in (23)

¥, = Z2,a.8" P (LBa)

Yo = [0 $2(9) + P8ens  (u8D)

InIl
2= L [omGu®) + GumGuld)] Bulo) (L9a)
v, = L (2 gu@) + &y G000 Pu®) (L9b)
' and in IIT
2, = L Bo(8/0)" Pul® (50)

To begin with, ¢, is derived.For any n 1 , the continuity equations
of ¥, and A¥,/”Y yield a set of L equations with unknowns £, , 2., ,
Lrv. and B. .Because of the form of the source term in (48b) these

equations are homogeneous and all coefficients vanish.For n =1, by (31)
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Yu () = (87 - $TT) exp 2us (51a)
akn. (g) = °<'g-' + -?-2 (Slb)
Denoting differentiation with respect to ¢ by dashes and defining
g‘ = Rl/ Ro
SO SRR SM WROREEUE P SN € (52)
& - P = Rr %,u () + 'e’iz %lﬂ-(‘)
B, = 2, ,08) + L, Fe(8)
-28, = ,Q,—”S,‘}’u &) <+ -Qllzg|%'|l(y‘>

The complete solution is rather lengthy.Jf o( > | swhich represents

the "high conductivity" case,and €, » | ,one obtains approximately

inlI
Y, = P cnwe (3f+ 907 (53a)
in II
= (3P/28) cno L1 - @S ) ey -2 (£-9) ] (53b)
and in IT1
2, = (aps./28) wre (53¢)

The poloidal field in IIT is thus that of an axial dipole while in II

B. (3p/Ro) cong £ (5ha)

Be = (3P/2Re8)sim & exp - 2¢(8,-9) (Skb)
which may be compared to (6) ., In1I

By = (P/R) n® (287+ 1)

Bo = (P/R) smd (87 1)

The lines of force of this solution are given in fig.24in the 1limit of high

conductivity,
Because of (L7b), <. 1is expressed by only three sets of undetermined

coefficients and the continuity of ¥, on r=R; does not have to be

invoked.By (21),in I
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R O 2 P S

2,
Because of
s = (2/3) (R -,) (56)
only for n = 0,2 do the coefficients of ¥, satisfy inhomogeneous
equations and therefore differ from zero.The monopole terms do not
contribute to the magnetic field,so that only the quadrupole part has

to be evaluated.Ome finds,in region II

%ul8) = (€87 3§% 3877) ey 2? (572)
Fa(f) = 8w 3:e77 3070 (57b)
from which
X, = Qe Ca,_, (\) + Oy 3’_1(\) (58)
0 = Gy %u(!.h— Qay 4, (84)
2,8 - 30, = Ay X, t A, M
where
¥ o= -Q@e/3u) (9, +8)
A, = =3, (\ - .2/04.) exyr 2ol
A o= 2%, (L43& + 92+ 3L7)
This again tends to produce cumbersome expressions.When ol » | s 231
one obtains in II
¢, ¥ 181 - epa-t)]ne) ¢« $) (59a)
and in I
Y. =2 {8 P + ot (59b)

In region 1I,by (1ha)
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Pe T 3F87 [ 1 - exp 24(8-9)] sind et (60)
which should be compared with (6b).
Finally, \, is derived.Equation (46d) implies that in region III the
lines of force of B 1lie on equipotentials of ¥ _ .Now B in that region
was found to be a dipole fieldy,and its lines of force are

satg/§ = st
Thus,in II1

Yo (+,8) = Wo (sims/8) = L en(siie/e) (61)
By (31) and (32),or by direct calculation of a -J-independent solution

of (Lha),the monopole term of ¥ is,in II

Y, (mews) = ao.s"wp 248 4+ Qo 87
which with (llic) gives

yc‘ (wumo) = Qoy + CZl

Assuming as before that o1, £ »t ,(59a) and (Lhc) give,in II

¥, = {?L\&) + Ca
Combining this with (61) and (56) shows that

sz = - \E
so that in II

W, = - ¥ sue (62)
and in II1

¥y, = - 2Y sl (8,/9) (63)

It should be noted that ., in II does not depend on r : the equipotentials
thus tend to be (with large o« and . ) cones of constant % .
The potential in T is determined in the same manner ,Jf o > 1,

the term containing %, in (55) may be neglected and one gets .

W, = (@P/u) (L8 + 8 ) sty (6L)
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The approximation involved here is the same as in (2) , so that (L6d)
magnetie
holds #n all regions and theplines of force lie on equipotential
cross section
swrfaces,Thus figure 2 may also be viewed as a . . of the
equipotentials of the electric field,

It is interesting to note that (ir the limiting case of high
conductivity) the electric potential in region 1I,especially near the
equatorial plane,is different from that at infinmity.n particular,the
equatorial plane is an equipotential in which,by (6L)

Et).o = %:“\-) R’OP (65)

The quantity ($/R.) ,which is of the order of the field at r =R, ,
will be taken as one gauss j; eq.(65) then gives a potential of about
2, 108 volts.This result may have some connection to the modulation of

which resembles that produced by an electric field
cosmic radiation by the solar activity cycleY(Ehmert,1960) 3 however,the
value of ¥, dedused here is too small by a factor 5-10,and it should be
borne in mind that when the solar dipole reverses its direction,as has
been observed in 1958 (Babcock,195%9), ¥, is bound to reverse its signe

To the preceding example one may add a homogeneous "interstellar magnetic
field" B, which,in order to preserve symmetry,will be assumed to be
parallel to the rotation axis (for an arbitrarily directed §o the calculation
is more involved).Such a field can be represented by a poloidal potential

‘f,. = i Gof Qo'9~ (66)
so that (50) is replaced by

~“+
g, = JZo.(8/F) P& + 2BRE S (67)
The inclusion of go causes a term % R.Bo to be added on the left
of the last two of equations (52).When these equations are solved,it turns

out that EEL

(the important coefficient in region I1) is modified by a factor
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[+ (R, /a2 ) exp aa(i-9,) (68)

which for large ol and f, win generally differ very slightly from
unity.Thus ¥, in region I and in most of 1I is only negligibly affected
and so,consequently,are ¥, and ¥, .One notes that it is quite possible
for the outlying interplanetary field to be much weaker than the surrounding
interstellar one.The solar wind then scoops out a cavity in the interstellar

field,as has been first suggested by Davis (1955).
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Abstract / 2 ¢

. . X Laoly
Three different explanations for the observed cosmic ray anisotropy pad

are investigated.The possibility that the amisotropy is due to the

magnetic

existence of trapped orbits in the interplanetary,field is explored

by analyzing the motion of charged particles in the stretched dipole

field developed in part 1.1t is found that an anisotropy is possible,

but only when several unlikely conditions are met.Two other theories of

the amisotropy,ascribing it either to a sumward flux density gradient

or to the Compton-Getting effect,are then discussed.It is shown that

in general both effects occur together ; for conservative fields they

cancel each other and no anisotropy occurs,as might indeed be expected

from Liouville's theorem.Consequently,any gradient of cosmic ray flux

density which might be measured in interplanetary space is not necessarily

connected with the observed anisotropy,. ) A JT Ho 4




Introduction

Because of their large gyration radii in the interplanetary field,
cosmic ray particles are likely to reflect in their behaviour the gross
structure of this field rather than local irregularities,One of the
important properties of these particles is their anisotropy,which
manifests itself in a solar daily variation of about 0.3% observed
on the surface of the earth.The direction of the maximum flux is appro-
ximately tangential to the earth's orbit on the afternoon side and the
range of energies at which the anisotropy has been observed is roughly
7 - 20 Bev.In this range the relative modulation is nearly independent
of energy ( McCracken,Rao and Venkatesan,1963 ) , in sharp contrast
with other types of cosmic ray intensity variations , which generally
decrease rapidly with increasing energy.

Various theories have been advanced to explain this amisotropy,most
of which fall into one of the following three classes

(1) Theories based on the Stérmer effect.According to these,the

anisotropy is caused by a solar-centered magnetic field in a
manner similar to that by which the terreétial dipole field
creates an east-west anisotropy in cosmic radiation observed
near the earth's surface.

(2) Theories base on a gradient of cosmic ray flux density in the

direction of the sun.

(3) Theories based on the Compton-Getting effect.In these,it is

assumed that the radiation is isotropic in some frame of reference
moving relative to the earth.

In what follows,these three approaches ( in the above order ) will be

investigated in more detail.




Stormer effect theories

It has been often suggested that the cosmic ray anisotropy is caused
by an interplanetary dipole field ( Janossy,1937 ; Alfvén,1947 ; Dwight,1950 ;
Elliot,1960,1962 ) . The idea is,essentially,that a weak scattering mechanism
operates to fill the trapped orbits which,however,are less densely populated
than free ones due to some additional loss mechanism,e.g. scattering into
orbits hitting the sun (Elliot,1960).In the energy range where some of the
radiation received on earth is trapped and the rest arrives directly an
anisotropy will be observed,with maximum effect in the direction normal to
the planes of the lines of force.

In view of the stretching and twisting expected of the (average)
interplanetary field,this model has to be modified considerably.Accordingly,
the motion of charged particles in the stretched dipole field,developed as
a worked example in part 1 , will now be investigated,

The lagrangian for the motion of a pérticle with mass m. and charge q
in an electromagnetic field with magnetic and electric potentials A and ¥,
is

L = -m (- U“/c’)& + 1'(6{) - Gs,';ﬂo (1)
If neither A nor ¥, depend on the azimuth angle ‘f ,then /o0 = A, is
a constant of motion ("Stérmer's first integral").Denoting by p the
particle's momentum and by w +the angle between its velocity and the P
direction,the following expression is obtained
Xo = vsme (fonw + 9 Ay) (2)
Because of the electric potential ¥, , p is not conserved.However,the
energies of interest here are considerably larger than the changes they

undergo in the electric field so that,in order to simplify the calculation,

p will be considered constant.From the example of part I it follows,in the



limit of high conductivity and with a source of dipole moment M ,that

A MM IYe\a
in region II A, = ;%,\-; —

3&0MR| S P
and in III A, = TR, ez

One notes that only the poloidal component of B contributes to (2).As
in the treatment of motion in an ordinary dipole field ( Stormer,1950 ;
Fermi,1950 ) , all lengths will be measured in momentum-dependent "St&rmer
units*

Ist. = (31”“\)‘0%')%

p Y
BNRAT /T (RoR,)% ( ?Y% "lo) (3)

The first factor on the right is a mean value of r in region II j§ the
second one is the ratio between R, and the radius of gyration obtained,

neglecting the toroidal component,on the inner boundary of region II at its

its intersection with the equatorial plane.Choosing By = 1 gauss ,
q=1.6 10°% coulomb,R = 7 lOlo cm (the solar radius) and measuring p
in Bev/c
le = 145 (RR. /)2 (1)
Measuring all lengths in Stormer units and defining
8T R o %2
X, = X, (m)
equation (2) becomes,in region II
\ X Snf
mw=?(§£§_ﬂ.> Ga)
and in region 111
X sime
cen W = rsimd ~ 2 (5b)

Consider those particles with given momentum p and invariant X, ,There

will in general exist certain parts of the (v ,9) plane where equations (5)



yvield |enw| > { and which therefore are not accessible to these particles,
The rest of the plane forms the "allowed region"™ , and if this region is
multiply connected,trapping may occur,

The allowed region in region II is simply connected.To see this,it is
best to consider a single radial direction with fixed -3 .For all points
having this & ,the bracketed term in (5a) is constant and |cesw| is a
monotonic single valued function of r . As the origin is approached, |ced w|
increases steadily until,for any -3 ,a forbidden region is reached (except
for & = arcsin (76,"1‘)% where the allowed region extends to the origin),
Thus the forbidden regions cluster around the origin and the allowed region
is simply connected.

The allowed region of the dipole field in I1I,on the other hand,is
multiply connected (Stormer,1950 ; Fermi,1950) if X.> 2 ,This region - with

then
which the allowed region of II merges smoothly - consistsAof an inner "trapped"

region in which ¥ < | everywhere and a "free" region where Y 2> | «Region
IIT will include part of the trapped region only if R ,< | or,by (L)
R /R, & 21cc0/q (6)

Assume that (6) holds and consider orbits in the equatorial plane of region

I1 .As a simplifying assumption,every orbit with X,>2 will then be considered
trapped and every one with X,<2 freeIf (6) is just barely satisfied

(e.ge R, = 0.9 ) it is easily seen from (5a) that no trapped orbits penetrate

very far into region I1I.As R, decreases,this situation changes rapidly

until at R, = 3 , for any r , orbits with w< ™/ are trapped and those
with w > /2 free,This is obviously when the anisotropy is most
proncunced.

Assuming that the daily variation indeed arises in this fashion and that




it is most pronounced at p = 15 Bev/c , (L) gives

t

R, = 350 R,

If the solar radius is chosen for Ry, , R\ 1is approximately two astronomical
umits - considerably less than is generally believed,but not impossible (for
discussion and references,see analysis by Axford,Dessler and Gottlieb [1963] )e

There are two fundamental difficulties with this explanation.First,the
polar field of the sun was observed to reverse its direction during the solar
maximum of 1958 (Babcock,1959) while the cosmic ray anisotropy maintained
jts direction.It has been suggested that the sun's polar field is not the
main source of the interplanetary magnetic field and that the latter does not
reverse (Elliot,1960).In any case,it is hoped that this point will be resolved
by future observations.

The second difficulty is that according to this explanation,the anisotropy
occurs only in a very narrow energy band ; it does not explain,for instance,
the observation of the daily variation underground (Regener,1962).It is
possible,however,that a more realistic (and less abrupt) model of the outer

boundary will resolve this problem,

The Density Gradient model

This theory has been described by Dattner and Venkatesan (1959) and was
worked out in detail by Elliot (1960,1962).0ne of its basic assumptions is
that the interplanetary magnetic field in the vicinity of the earth is perpen-
dicular to the ecliptic ; of course,this does not agree with the radial stretching
of magnetic lines of force by the solar wind,but this point will not be

considered now.Let r be the distance from the sun to an observer on earth




and let the discussion be restricted to particles with.

momentum p , which will have a gyration radius a(r) in the earth's
vicinity. Particles arriving tangentially to the earth's orbit from

one direction will then have their guiding center at distance (¥ +a) s
while those arriving from the opposite direction will have it at (v-a) .
If there is a sunward gradient in the flux density $ (reckoned at the
guiding center of the particles it describes) the fluxes in the two
directions are not equal and their ratio to the first order in (a/r)

is (1 +$) , where (Elliot, 1960)

29

I

o | S
<he

(7)

There is good reason to believe a density gradient actually exists
in interplanetary space, since it has been observed that the flux density
arriving at earth undergoes a modulation connected with the solar cycle,
and this modulation presumably extends only a finite distance from the
sun. A different question is whether the gradient is pronounced in the
vicinity of the earth's orbit. No evidence of an appreciable gradient
was found by either Pioneer V (Simpson, Fan and Meyer, 1962) or
Mariner II (Anderson, 1963); however, the radiation detectors aboard
both these space probes were sensitive dowﬁ to energies below 100 Mev, so
that the absence of a density gradient in the energy range in which an

anisotropy is observed on earth may not be considered proven.



A gradient of flux density is not, however, sufficient to create
an anisotropy. As a simple illustration, suppose the radiation is
acted upon by an electric field due to a positively charged sun. In
such a field there will exist a flux density gradient, but because of
Liouville's theorem, if the radiation is isotropic far from earth it
will remain so anywhere in the field (effects of trapping are not
considered now). It is instructive to examine the mechanism by which
this happens.

Consider monoenergetic particles with charge q moving in the symmetry
plane of a magretic dipole field set up around the (positively charged) sun, and
assume for simplicity that the motion is nonrelativistic. By Liouville's

theorem, with phase-space density T

& = =4
L % 34
® dr T 4av

Let W(r) be the mean kinetic energy at distance r and E(r) the (radial)

electric field intensity there. Then
4 m aw m
&% = oA T - YL‘\'E

substituting a = p/gB one obtains
$ = - E/vB ' (8)

On the other hand, the electric field alsoc causes the guiding center
to drift in the direction of the anisotropy with velocity U5, which by

the nonrelativistic guilding center theory is



E
u" = B'L = -_B— (9)

In the reference frame of its guiding center, a particle spends
equal time moving in any direction in its plane of gyration. Given a
large number of particles arriving from infinity, an observer moving
with this frame sees an isotropic flux. The flux distribution in a
frame of reference moving with velocity \§ relative to a frame of reference
in which particles arrive isotropically has been calculated (for the
extreme relativistic limit) by Compton and Getting (1935). For non-
relativistic motion in which Y; is much smaller than the particle velocity
v , one finds that the flux in the forward direction increases by a
factor 1+ 3(Yp/¢) while in the backward direction it is diminished
by an equal amount. An anisotropy ratio 1 +(6E/vB) will therefore arise,
completely cancelling out the gradient effect.

More generally, if a density gradient is responsible for the
anisotropy, it cannot be caused by a simple potential field, e.g. by ¥,
in the model used here. This is expected to hold even for relativistic
particles, for Liocuville's theorem remains true at relativistic velocities.
It is of course possible that there may exist a nonconservative field in
the solar system, by which particles gain (Warwick, 1962) or lose (Singer,
Laster and Lencheck, 1962) energy. Such a field could, in principle,
explain the anisotropy, were it not for the radial stretching of the lines
of force. In any case, the solar cycle modulation and any flux density
gradient which might be observed in space may very well be due to a

conservative mechanism and have no connection with anisotropies.
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Anisotropy due to the Compton-Getting effect

A theory has been developed by Ahluwalia and Dessler (1962)
ascribing the anisotropy to relative motion between the earth and a
frame of reference in which the cosmic radiation is isotropic. The
orbital motion of the earth, for instance, would produce such an
effect: +this will however have an opposite phase to what is observed,
and turns out (Dattner and Venkatesan, 1959) to have an amplitude of
only 0.03%. In this theory, the sun is assumed to be surrounded by
matter flowing radially outwards, as in the model used here. An electric
field is then set up, which causes cosmic ray particles to drift across
it and be isotropic in a frame of reference moving with the drift
velocity. An earlier theory of this kind, by Brunberg and Dattner (l95h),
assumes the electric field is created by co-rotation of the interplanetary
gas with the sun, extending at least to the earth's orbit.

In a highly conducting ionized gas an electric field will indeed
exist, tending to the limiting value of -[vx 8] . However, if B is
axisymmetric around the rotation axis

cuvl E = - 2—% = o
so that E is conservative and according to the conclusions of the previous
section, nc anisotropy arises.

There remains the possibility that the field is not symmetric around
the solar rotation axis, e.g. due to "beams' of enhanced velocity as

suggested by Alfven (1956). In that case, however, it is hard to explain

the constancy of the direction of the anisotropy. Assume the field is
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increasing at a certain time, creating an anisotropy in the observed
direction. Several days later the field will be dropping to its
previous value, so that particles in those orbits in which accgleration
took place in the first instance will now be decelerated. One would then
expect the anisotropy to reverse or at least undergo a consideralle
change in direction. One would also expect a much better490rrelation
than is observed between the amplitude of the anisotropy and solar
disturbances.
Conclusion

It will be seen from the preceding that all three explanations of the cosmic
ray anisotropy meet with serious difficulties.While no detailed description
should be expected from the crude model used,the following general conclusioﬁs
may be drawn ¢

(1) Anisotropies due te twapped orbits are possible in the stretched
dipole field,but only in a narrow energy range depending on the
strength of the field's source and on the distance at which the
lines of force begin closing.0f course,no anisotropy will be
observed unless a preferential loss mechanism for trapped orbits
exists ,

(2) The existence - or lack of existence - of a radial flux density
gradient in interplanetary space méy be totally unrelated to the
observed anisotropy,

(3) A conservative electric field,as proposed by Dessler and Ahluwalia,

will not give rise to an anisotropy.
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